
DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 1 C S L 2 0 1 D A T A S T R U C T U R E L A B

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)

(Approved by AICTE , Affiliated to APJ Abdul Kalam Technological University, Kerala)

Pampady, Thiruvilwamala(PO), Thrissur(DT), Kerala 680 588

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LAB MANUAL

CSL201 DATA STRUCTURES LAB

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through

excellence in education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and

Research in Engineering and Frontier Technology and to impart quality education to

mould technically competent citizens with moral integrity, social commitment and ethical

values.

We intend to facilitate our students to assimilate the latest technological know-how and to

imbibe discipline, culture and spiritually, and to mould them in to technological giants,

dedicated research scientists and intellectual leaders of the country who can spread the

beams of light and happiness among the poor and the underprivileged.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 2 C S L 2 0 1 D A T A S T R U C T U R E L A B

ABOUT THE DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Certified by ISO 9001-2015

 Affiliated to A P J Abdul Kalam Technological University, Kerala.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering

Professionals to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world

problems with emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will be able to Work and Contribute in the domains of Computer

Science and Engineering through lifelong learning.

PEO2: Graduates will be able to analyze, design and development of novel

Software Packages, Web Services, System Tools and Components as per

needs and specifications.

PEO3: Graduates will be able to demonstrate their ability to adapt to a rapidly

changing environment by learning and applying new technologies.

PEO4: Graduates will be able to adopt ethical attitudes, exhibit effective

communication skills, Team work and leadership qualities.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 3 C S L 2 0 1 D A T A S T R U C T U R E L A B

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution of

complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the

cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge

and research methods including design of experiments, analysis and

interpretation of data, and synthesis of the information to provide valid

conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,

and modern engineering and IT tools including prediction and modeling to

complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the

consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts, and demonstrate

the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities

with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make

effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding

of the engineering and management principles and apply these to one’s own

work, as a member and leader in a team, to manage projects and in

multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability

to engage in independent and life-long learning in the broadest context of

technological change.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 4 C S L 2 0 1 D A T A S T R U C T U R E L A B

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software

solutions for Real-time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development

of high quality System Software Tools and Efficient Web Design Models with a focus

on performance optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating

hardware/software products in the domains of Big Data Analytics, Web Applications

and Mobile Apps to create innovative career path and for the socially relevant issues.

COURSE OUTCOME

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 5 C S L 2 0 1 D A T A S T R U C T U R E L A B

MAPPING OF COURSE OUTCOMES WITH PROGRAM SPECIFIC OUTCOMES

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

 PSO1 PSO2

PSO3

CO1
3 3 -

CO2
3 3 -

CO3
3 3 -

CO4
3 3 -

CO5
3 3 -

CO6
3 3 -

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 6 C S L 2 0 1 D A T A S T R U C T U R E L A B

PREPARATION FOR THE LABORATORY SESSION

GENERAL INSTRUCTIONS TO STUDENTS

1. Read carefully and understand the description of the experiment in the lab

manual. You may go to the lab at an earlier date to look at the experimental

facility and understand it better. Consult the appropriate references to be

completely familiar with the concepts and hardware.

2. Make sure that your observation for previous week experiment is evaluated

by the faculty member and you have transferred all the contents to your record

before entering to the lab/workshop.

3. At the beginning of the class, if the faculty or the instructor finds that a

student is not adequately prepared, they will be marked as absent and not be

allowed to perform the experiment.

4. Bring necessary material needed (writing materials, graphs, calculators,

etc.) to perform the required preliminary analysis. It is a good idea to do

sample calculations and as much of the analysis as possible during the session.

Faculty help will be available. Errors in the procedure may thus be easily

detected and rectified.

5. Please actively participate in class and don’t hesitate to ask questions.

Please utilize the teaching assistants fully. To encourage you to be prepared

and to read the lab manual before coming to the laboratory, unannounced

questions may be asked at any time during the lab.

6. Carelessness in personal conduct or in handling equipment may result in

serious injury to the individual or the equipment. Do not run near moving

machinery/equipment. Always be on the alert for strange sounds. Guard

against entangling clothes in moving parts of machinery.

7. Students must follow the proper dress code inside the laboratory. To protect

clothing from dirt, wear a lab coat. Long hair should be tied back. Shoes

covering the whole foot will have to be worn.

8. In performing the experiments, please proceed carefully to minimize any

water spills, especially on the electric circuits and wire.

9. Maintain silence, order and discipline inside the lab. Don’t use cell phones

inside the laboratory.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 7 C S L 2 0 1 D A T A S T R U C T U R E L A B

10. Any injury no matter how small must be reported to the instructor

immediately.

11. Check with faculty members one week before the experiment to make sure

that you have the handout for that experiment and all the apparatus.

AFTER THE LABORATORY SESSION

1. Clean up your work area.

2. Check with the technician before you leave.

3. Make sure you understand what kind of report is to be prepared and due

submission of record is next lab class.

4. Do sample calculations and some preliminary work to verify that the

experiment was successful

MAKE-UPS AND LATE WORK

 Students must participate in all laboratory exercises as scheduled. They

must obtain permission from the faculty member for absence, which would be

granted only under justifiable circumstances. In such an event, a student must

make arrangements for a make-up laboratory, which will be scheduled when

the time is available after completing one cycle. Late submission will be

awarded less mark for record and internals and zero in worst cases.

LABORATORY POLICIES

1. Food, beverages & mobile phones are not allowed in the laboratory at any

time.

2. Do not sit or place anything on instrument benches.

3. Organizing laboratory experiments requires the help of laboratory

technicians and staff. Be punctual.

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 8 C S L 2 0 1 D A T A S T R U C T U R E L A B

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 9 C S L 2 0 1 D A T A S T R U C T U R E L A B

INDEX

EXP

NO
EXPERIMENT NAME

PAGE

NO

1 Stack using arrays 10

2 Queue using arrays 16

3 Polynomial addition using arrays 22

4 Sparse matrix 29

5 Singly linked list 33

6 Conversion of expressions 47

7
Memory allocation and garbage collection using doubly

linked list.
56

8 Polynomial representation using linked list 62

9 Linear search and Binary search 67

10 Binary trees 74

11 DFS and BFS 84

12 Insertion sort. 93

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 10 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 1

STACK USING ARRAYS

AIM

Write a program to implement Stack using arrays

ALGORITHM

Step 1: Start

Step 2: Set top to -1

Step 3: Print size of stack

Step 4: If (push)

 Step 4.1: If (top=size-1)

 Step 4.1.1: Print overflow

 Step 4.1.2: Endif

 Step 4.1.3: Else

 Step 4.1.3.1: Decrement top

 Step 4.1.3.2: Read one element

 Step 4.1.3.3: Set stack[top] to element

 Step 4.1.4: Else end

Step 5: If (pop)

 Step 5.1: If (top=-1)

 Step 5.1.1: Print overflow

 Step 5.1.2: Endif

 Step 5.1.3: Else

 Step 5.1.3.1: Set item to stack[top]

 Step 5.1.3.2: Set top to top-1

 Step 5.1.3.3: Else end

Step 6: If (display)

 Step 6.1: Set i as top

 Step 6.2: Loop (i<top)

 Step 6.2.1: Print stack

 Step 6.2.2: Increment i

 Step 6.3: Loop ends

Step 7: Stop

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 11 C S L 2 0 1 D A T A S T R U C T U R E L A B

PROGRAM

#include<stdio.h>

#include<conio.h>

void main()

{

int st[50],top=-1,k,n,i,si;

char ch;

clrscr();

printf("\n\tProgram to push ,pop or display an element from a stack");

printf("\n\t___\n\n");

printf("\n\tEnter the size of the stack:") ;

scanf("%d",&si);

do

{

printf("\n\t\tMENU");

printf("\n\t\t_____\n");

printf("\n\n\t1.Push\n\n\t2.Pop\n\n\t3.Display\n\n\t4.Exit");

printf("\n\n\tEnter your choice:");

scanf("%d",&n);

if(n==1)

{

if(top==si-1)

{

printf("\n\tStack is overflow");

else

{

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 12 C S L 2 0 1 D A T A S T R U C T U R E L A B

printf("\n\tEnter the element to be inserted:");

scanf("%d",&k);

top++;

st[top]=k;

printf("\n\tThe entered element is %d",st[top]);

}

}

else if(n==2)

{

if(top==-1)

{

printf("\n\tStack is underflow");

}

else

{

printf("\n\tThe deleted element is %d",st[top]);

top--;

}

}

else if(n==3)

{

if(top==-1)

{

printf("\n\tStack underflow");

}

else

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 13 C S L 2 0 1 D A T A S T R U C T U R E L A B

{

printf("\n\tThe stack is:");

for(i=top;i>=0;i--)

{

printf("\t\t%d",st[i]);

}

}

}

else

{

break;

}

printf("\n\n\tDo you want to continue (Y/N) ?");

scanf(" %c",&ch);

}

while((ch=='Y')||(ch=='y'));

getch();

}

OUTPUT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 14 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is a linear data structure?

2. What are the operations of stack?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 15 C S L 2 0 1 D A T A S T R U C T U R E L A B

3. What are the applications of Stack?

4. What is top value in stack?

5. How can a stack can be implemented?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 16 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 2

QUEUE USING ARRAYS

AIM

Write a program to implement Queue.

ALGORITHM

Step 1: Start

Step 2: Set front and rear to -1

Step 3: Read size of queue

Step 4: If (insertion)

 Step 4.1: If (rear=size-1)

 Step 4.1.1: Print overflow

 Step 4.2: End if

 Step 4.3: Else

 Step 4.3.1: Print enter the element

 Step 4.3.2: Read the element

 Step 4.3.3: If (front=-1& rear=-1)

 Step 4.3.3.1: Set front=0

 Step 4.3.3.2: Increment rear

 Step 4.3.3.3: Read element to queue [rear]

 Step 4.3.3.4: Endif

 Step 4.3.4: End else

Step 5: If (deletion)

 Step 5.1: If (front=-1)

 Step 5.1.1: Print underflow

 Step 5.2: End if

 Step 5.3: Else

 Step 5.3.1: Print deleted element is queue [front]

 Step 5.3.2: If (front=rear)

 Step 5.3.2.1: Set front and rear as -1

 Step 5.3.2.2: Endif

 Step 5.3.2.3: Else

 Step 5.3.2.3.1: Increment front

 Step 5.3.2.3.2: End Else

 Step 5.4: Endif

Step 6: If (display)

 Step 6.1: If (front & rear are -1)

 Step 6.1.1: Print underflow

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 17 C S L 2 0 1 D A T A S T R U C T U R E L A B

 Step 6.1.2: End if

 Step 6.1.3: Else

 Step 6.1.3.1: Set i as zero

 Step 6.1.3.2: Loop (i<rear)

 Step 6.1.3.2.1: Print queue[i]

 Step 6.1.3.2.2: Loop ends

 Step 6.1.4: End else

Step 7: End if

Step 8: Stop

PROGRAM

#include<stdio.h>

#include<conio.h>

void main()

{

int no,i,front=-1,rear=-1,k,queue[50],element,n;

char c;

clrscr();

printf("\n\n\n\tPROGRAM TO INSERT, DELETE AND DISPLAY ELEMENTS TO QUEUE");

printf("\n\t...\n\n\n");

printf("\n\n\tEnter the size of the queue: ");

scanf("%d",&n);

do

{

printf("\n\n\n\t\t\t\tMENU\n\n");

printf("\t\t1.INSERT\n\n\t\t2.DELETE\n\n\t\t3.DISPLAY\n\n\t\t4.EXIT\n\n\t\tEnter your choice:

");

scanf("%d",&no);

if(no==1)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 18 C S L 2 0 1 D A T A S T R U C T U R E L A B

{

if(rear==(n-1))

printf("\n\t\tOverflow");

else

{

printf("\n\n\t\tEnter the element: ");

scanf("%d",&element);

if(front==-1&&rear==-1)

front=0;

rear++;

queue[rear]=element;

}

}

if(no==2)

{

if(front==-1)

printf("\n\t\tUnderflow\n");

else

{

k=queue[front];

printf("\n\t\tDeleted element is %d ",k);

}

if(front==rear)

front=rear=-1;

else

front++;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 19 C S L 2 0 1 D A T A S T R U C T U R E L A B

}

if(no==3)

{

if(front==-1&&rear==-1)

printf("\n\t\tUnderflow\n");

else

{

printf("\n\t\tQueue elements are\n ");

for(i=front;i<=rear;i++)

{

printf("\n\n\t\t%d",queue[i]);

}

}

}

if(no==4)

break;

printf("\n\n\t\tDo you want to continue(y/n) ");

scanf(" %c",&c);

}

while(c=='y'||c=='Y');

getch();

}

OUTPUT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 20 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is a queue?

2. What are the operations on queue?

3. What are the applications of queue?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 21 C S L 2 0 1 D A T A S T R U C T U R E L A B

4. What are rear and front in queue?

5. How can a queue be implemented?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 22 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 3

POLYNOMIAL ADDITION USING ARRAYS

AIM

Write a program to implement polynomial addition using arrays

ALGORITHM

 Step 1. [Initialize segment variables]

 [Initialize Counter] Set i=0,j=0,k=0

 Step 2. Repeat step 3 while i<t1 and j<t2

 Step 3. If p1[i].expo=p2[j].expo, then

p3[i].coeff=p1[i].coeff+p2[i].coeff

p3[k].expo=p1[i].expo

 [Increase counter] Set i=i+1,j=j+1,k=k+1

else if p1[i].expo > p2[j].expo, then

p3[k].coeff=p1[i].coeff

p3[k].expo=p1[i].expo

 [Increase counter] Set i=i+1,k=k+1

else

p3[k].coeff=p2[j].coeff

p3[k].expo=p2[j].expo

 Set j=j+1,k=k+1

 [End of If]

 [End of loop]

Step 4. Repeat while i<t1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 23 C S L 2 0 1 D A T A S T R U C T U R E L A B

p3[k].coeff=p1[i].coeff

p3[k].expo=p1[i].expo

 Set i=i+1,k=k+1

 [End of loop]

Step 5. Repeat while j<t2

p3[k].coeff=p2[j].coeff

p3[k].expo=p2[j].expo

 Set j=j+1,k=k+1

 [End of loop]

Step 6. Return k

Step 7. Exit

PROGRAM

 #include<stdio.h>

struct poly

 {

 int coeff;

 int expo;

 };

struct poly p1[10],p2[10],p3[10];

int readPoly(struct poly []);

 int addPoly(struct poly [],struct poly [],int ,int ,struct poly []);

 void displayPoly(struct poly [],int terms);

 int main()

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 24 C S L 2 0 1 D A T A S T R U C T U R E L A B

 {

 int t1,t2,t3;

 t1=readPoly(p1);

 printf(" \n First polynomial : ");

 displayPoly(p1,t1);

 t2=readPoly(p2);

 printf(" \n Second polynomial : ");

 displayPoly(p2,t2);

 t3=addPoly(p1,p2,t1,t2,p3);

 printf(" \n\n Resultant polynomial after addition : ");

 displayPoly(p3,t3);

 printf("\n");

 return 0;

 }

 int readPoly(struct poly p[10])

 {

 int t1,i;

 printf("\n\n Enter the total number of terms in the polynomial:");

 scanf("%d",&t1);

 printf("\n Enter the COEFFICIENT and EXPONENT in DESCENDING

ORDER\n");

 for(i=0;i<t1;i++)

 {

 printf(" Enter the Coefficient(%d): ",i+1);

 scanf("%d",&p[i].coeff);

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 25 C S L 2 0 1 D A T A S T R U C T U R E L A B

 printf(" Enter the exponent(%d): ",i+1);

 scanf("%d",&p[i].expo); /* only statement in loop */

 }

 return(t1);

 }

 int addPoly(struct poly p1[10],struct poly p2[10],int t1,int t2,struct poly p3[10])

 {

 int i,j,k;

i=0;

 j=0;

 k=0;

 while(i<t1 && j<t2)

 {

 if(p1[i].expo==p2[j].expo)

 {

 p3[k].coeff=p1[i].coeff + p2[j].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 j++;

 k++;

 }

 else if(p1[i].expo>p2[j].expo)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 26 C S L 2 0 1 D A T A S T R U C T U R E L A B

 {

 p3[k].coeff=p1[i].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 k++;

 }

 else

 {

 p3[k].coeff=p2[j].coeff;

 p3[k].expo=p2[j].expo;

 j++;

 k++;

 }

 }

 while(i<t1)

 {

 p3[k].coeff=p1[i].coeff;

 p3[k].expo=p1[i].expo;

 i++;

 k++;

 }

 while(j<t2)

 {

 p3[k].coeff=p2[j].coeff;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 27 C S L 2 0 1 D A T A S T R U C T U R E L A B

 p3[k].expo=p2[j].expo;

 j++;

 k++;

 }

 return(k); /* k is number of terms in resultant polynomial*/

 }

 void displayPoly(struct poly p[10],int term)

 {

 int k;

 for(k=0;k<term-1;k++)

 printf("%d(x^%d)+",p[k].coeff,p[k].expo);

 printf("%d(x^%d)",p[term-1].coeff,p[term-1].expo);

}

OUTPUT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 28 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is a polynomial?

2. How do you represent a polynomial?

3. What are the operations performed on polynomials?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 29 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 4

SPARSE MATRIX

AIM

Write a program to implement sparse matrix using arrays.

ALGORITHM

Step 1. Start.

Step 2. Declare the matrix sparse_matrix

Step 3. Determine the size of the matrix.

Step 4. for(int i=0; i<4; i++) do repeat

 for(int j=0; j<5; j++) do repeat

 if sparse_matrix[i][j]!=0 then do

 set matrix[0][k] = i

 matrix[1][k] = j

 matrix[2][k] = sparse_matrix[i][j]

 increment k

Step 5. Print matrix

Step 6. Stop

PROGRAM

#include <stdio.h>

int main()

{

 // Sparse matrix having size 4*5

 int sparse_matrix[4][5] =

 {

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 30 C S L 2 0 1 D A T A S T R U C T U R E L A B

 {0 , 0 , 7 , 0 , 9 },

 {0 , 0 , 5 , 7 , 0 },

 {0 , 0 , 0 , 0 , 0 },

 {0 , 2 , 3 , 0 , 0 }

 };

 // size of matrix

 int size = 0;

 for(int i=0; i<4; i++)

 {

 for(int j=0; j<5; j++)

 {

 if(sparse_matrix[i][j]!=0)

 {

 size++;

 }

 }

 }

 // Defining final matrix

 int matrix[3][size];

 int k=0;

 // Computing final matrix

 for(int i=0; i<4; i++)

 {

 for(int j=0; j<5; j++)

 {

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 31 C S L 2 0 1 D A T A S T R U C T U R E L A B

 if(sparse_matrix[i][j]!=0)

 {

 matrix[0][k] = i;

 matrix[1][k] = j;

 matrix[2][k] = sparse_matrix[i][j];

 k++;

 }

 }

 }

 // Displaying the final matrix

 for(int i=0 ;i<3; i++)

 {

 for(int j=0; j<size; j++)

 {

 printf("%d ", matrix[i][j]);

 printf("\t");

 }

 printf("\n");

 }

 return 0;

}

OUTPUT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 32 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is a sparse matrix?

2. How do you represent a sparse matrix?

3. What are the operations performed on sparse matrix?

4. What are the applications of sparse matrix?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 33 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 5

SINGLY LINKED LIST

AIM

Write a program to implement Single linked lists.

ALGORITHM

Step 1: Start

Step 2: Read the option

Step 3: If (traverse)

 Step 3.1: Ptr=header->link

 Step 3.2: While (ptr!=Null)do

 Step 3.2.1: Print ptr->data

 Step 3.2.2: Ptr=ptr->link

 Step 3.3: End while

 Step 3.4: Stop

Step 4: Elseif (insertion at front)

 Step 4.1: New = getnode (Node)

 Step 4.2: If (new=null)

 Step 4.2.1: Insertion not possible

 Step 4.2.2: Exit

 Step 4.3: Else

 Step 4.3.1: New->link=header->link

 Step 4.3.2: Header->link=new

 Step 4.4: Endif

 Step 4.5: Stop

Step 5: Elseif (insertion at end)

 Step 5.1: New = getnode (node)

 Step 5.2: If (new=null) then

 Step 5.2.1: Print insufficient memory

 Step 5.2.2: Exit

 Step 5.3: Else

 Step 5.3.1: Ptr=header

 Step 5.3.2: While (ptr->link#null)

 Step 5.3.2.1: Ptr=ptr->link

 Step 5.3.3: End while

 Step 5.3.4: Ptr->link=new

 Step 5.3.5: New->data=x

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 34 C S L 2 0 1 D A T A S T R U C T U R E L A B

 Step 5.3.6: New->link=null

 Step 5.4: Endif

 Step 5.5: Stop

Step 6: Else if (inset at any position)

 Step 6.1: New = getnode (node)

 Step 6.2: If (new==null)

 Step 6.2.1: Printf insufficient memory

 Step 6.2.2: Exit

 Step 6.3: Else

 Step 6.3.1: Ptr=header

 Step 6.3.2: While (ptr->data#key) and (ptr->link#null)

 Step 6.3.2.1: Ptr=ptr->link

 Step 6.3.3: End while

 Step 6.3.4: If (ptr->link=null)

 Step 6.3.4.1: Print key not available

 Step 6.3.4.2: Exit

 Step 6.3.5: Else

 Step 6.3.5.1: New->link=ptr->link

 Step 6.3.5.2: New->data=v

 Step 6.3.5.3: Ptr->link =new

 Step 6.3.6: Endif

 Step 6.4: Endif

 Step 6.5: Stop

Step 7: Elseif (deletefront)

 Step 7.1: Ptr=header->link

 Step 7.2: If (ptr=null) then

 Step 7.2.1: Print Empty list

 Step 7.2.2: Exit

 Step 7.3: Else

 Step 7.3.1: Ptr1=ptr->link

 Step 7.3.2: Header->link=ptr1

 Step 7.3.3: Return node (ptr)

 Step 7.4: Endif

 Step 7.5: Stop

Step 8: Else if (delete end)

 Step 8.1: Ptr=header->link

 Step 8.2: If (ptr=null) then

 Step 8.2.1: Print empty list

 Step 8.2.2: Exit

 Step 8.3: Else

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 35 C S L 2 0 1 D A T A S T R U C T U R E L A B

 Step 8.3.1: While (ptr->link#Null)

 Step 8.3.1.1: Ptr1=ptr

 Step 8.3.1.2: Ptr=ptr->link

 Step 8.3.2: End while

 Step 8.3.3: Ptr->link=null

 Step 8.3.4: Return node(ptr)

 Step 8.3.5: Endif

 Step 8.3.6: Stop

Step 9: Elseif (delete any)

 Step 9.1: Ptr1=header

 Step 9.2: Ptr=ptr1->link

 Step 9.3: If (ptr==null) then

 Step 9.3.1: Print Empty list

 Step 9.3.2: Exit

 Step 9.4: Else

 Step 9.4.1: While (ptr#null) and (ptr->data#key) do

 Step 9.4.1.1: Ptr1=ptr

 Step 9.4.1.2: Ptr=ptr->link

 Step 9.4.2: End while

 Step 9.4.3: If (ptr==null) then

 Step 9.4.3.1: Print Key not present

 Step 9.4.3.2: Exit

 Step 9.4.4: Else

 Step 9.4.4.1: Ptr1->link=ptr->link

 Step 9.4.4.2: Return node (ptr)

 Step 9.4.5: End if

 Step 9.4.6: Stop

Step 9: Endif

Step 10: Stop

PROGRAM DEVELOPMENT:

#include<stdio.h>

#include<conio.h>

#include<alloc.h>

void traverse();

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 36 C S L 2 0 1 D A T A S T R U C T U R E L A B

void insertfront();

void insertend();

void insertany();

void deletefront();

void deleteend();

void deleteany();

typedef struct node

{

int data;

struct node *link;

}NODE;

NODE *header=NULL,*newptr=NULL,*ptr,*ptr1;

void main()

{

int no,item;

char c;

clrscr();

printf("\n\tPROGRAM TO PERFORM OPERATIONS ON SINGLE LINKED LIST");

printf("\n\t...");

do

{

printf("\n\t\t\t\tMENU\n\n");

printf("\t\t1.TRAVERSE\n\t\t2.INSERT AT FRONT\n\t\t3.INSERT AT END\n\t\t4.INSERT AT

ANY POSITION\n\t\t5.DELETE FROM FRONT\n\t\t6.DELETE FROM END\n\t\t7.DELETE

FROM ANY POSITION\n\t\t8.EXIT\n\t\tEnter your choice: ");

scanf("%d",&no);

if(no==8)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 37 C S L 2 0 1 D A T A S T R U C T U R E L A B

break;

switch(no)

{

case 1:

 traverse();

 break;

case 2:

 insertfront();

 break;

case 3:

 insertend();

 break;

case 4:

 insertany();

 break;

case 5:

 deletefront();

 break;

case 6:

 deleteend();

 break;

case 7:

 deleteany();

 break;

default :

 printf("\t\tINVALID ENTRY");

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 38 C S L 2 0 1 D A T A S T R U C T U R E L A B

 break;

}

printf("\t\tDo you want to continue(y/n) ");

scanf(" %c",&c);

}

while(c=='y'||c=='Y');

getch();

}

void insertfront()

{

newptr=(NODE*)malloc(sizeof(NODE));

printf("\t\tEnter the element: ");

scanf("%d",&newptr->data);

newptr->link=NULL;

if(newptr==NULL)

printf("\t\tInsufficient memmory");

else

{

newptr->link=header->link;

header->link=newptr;

}

}

void insertend()

{

newptr=(NODE*)malloc(sizeof(NODE));

if(newptr==NULL)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 39 C S L 2 0 1 D A T A S T R U C T U R E L A B

printf("\t\tInsufficient memmory");

else

{

printf("\t\tEnter the element: ");

scanf("%d",&newptr->data);

newptr->link=NULL;

ptr=header;

while(ptr->link!=NULL)

ptr=ptr->link;

newptr->link=ptr->link;

ptr->link=newptr;

}

}

void insertany()

{

int key;

newptr=(NODE*)malloc(sizeof(NODE));

if(newptr==NULL)

printf("\t\tInsufficient memmory");

else

{

printf("\t\tenter the key");

scanf("%d",&key);

printf("\t\tenter the element");

scanf("%d",&newptr->data);

ptr=header->link;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 40 C S L 2 0 1 D A T A S T R U C T U R E L A B

while(ptr->data!=key&&ptr!=NULL)

ptr=ptr->link;

if(ptr==NULL)

printf("\t\tkey is not found");

else

{

newptr->link=ptr->link;

ptr->link=newptr;

}

}

}

void deletefront()

{

ptr=header->link;

ptr1=ptr->link;

if(ptr==NULL)

printf("\t\tEmpty list");

else

{

header->link=ptr1;

printf("\t\tdeleted element is %d",ptr->data);

free(ptr);

}

printf("\n");

}

void deleteend()

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 41 C S L 2 0 1 D A T A S T R U C T U R E L A B

{

ptr=header;

ptr1=ptr->link;

if(ptr1==NULL)

printf("\t\tEmpty list");

else

{

while(ptr1->link!=NULL)

{

ptr=ptr->link;

ptr1=ptr1->link;

}

ptr->link=NULL;

printf("\t\tDeleted element is %d",ptr1->data);

free(ptr1);

}

printf("\n");

}

void deleteany()

{

int key;

ptr=header;

ptr1=ptr->link;

if(ptr1==NULL)

printf("\t\tEmpty list");

else

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 42 C S L 2 0 1 D A T A S T R U C T U R E L A B

{

printf("\t\tenter the key");

scanf("%d",&key);

while(ptr1->data!=key&&ptr1!=NULL)

{

ptr=ptr1;

ptr1=ptr1->link;

}

if(ptr1==NULL)

printf("\t\tKey not found");

else if(ptr1->data==key)

{

ptr->link=ptr1->link;

printf("\t\tDeleted element is %d",ptr1->data);

free(ptr1);}

printf("\n");

}}

void traverse()

{

if(header->link==NULL)

printf("\t\tlist is empty\n");

else

{

printf("\t\tElements are\n");

ptr=header->link;

printf("\t\t");

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 43 C S L 2 0 1 D A T A S T R U C T U R E L A B

while(ptr!=NULL)

{

printf(" %d",ptr->data);

ptr=ptr->link;

}

printf("\n");}}

OUTPUT:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 44 C S L 2 0 1 D A T A S T R U C T U R E L A B

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 45 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. How will you represent a linked list in a graphical view?

2. How many types of Linked List exist?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 46 C S L 2 0 1 D A T A S T R U C T U R E L A B

3. How can you represent a linked list node?

4. Which type of memory allocation is referred for Linked List?

5. What do you know about traversal in linked lists?

6. What are the main differences between the Linked List and Linear Array?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 47 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 6

CONVERSION OF EXPRESSIONS

AIM

Write a program to implement infix to postfix expression conversion and its evaluation.

ALGORITHM

Step 1: Start

Step 2: Read the expression

Step 3: For I from 0 to length

 Step 3.1: Set ch as a[i]

 Step 3.2: If (ch=’c’)

 Step 3.2.1: Push (ch)

 Step 3.3: If (ch=’)’)

 Step 3.3.1: While (stk [top]!=’(’)

 Step 3.3.1.1: Read stk [top]=post[j++]

 Step 3.3.1.2: Decrement top

 Step 3.3.2: End loop

 Step 3.3.3: Decrement top

 Step 3.4: If (ch=’+’ or ch=’-’ or ch=’*’ orch=’/’)

 Step 3.4.1: If (top=-1 or stk[top]=’(’)

 Step 3.4.1.1: Push (ch)

 Step 3.4.2: Else

 Step 3.4.2.1: x=priority (ch)

 Step 3.4.2.2: y=priority (stk [top])

 Step 3.4.2.3: If(y>=x)

 Step 3.4.2.3.1: Read stk [top] to post [j++]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 48 C S L 2 0 1 D A T A S T R U C T U R E L A B

 Step 3.4.2.3.2: Decrement top

 Step 3.4.2.3.3: Push (ch)

 Step 3.4.2.4: Else

 Step 3.4.2.4.1: Push (ch)

 Step 3.4.2.5: End if

 Step 3.4.3: End if

 Step 3.5: If (ch is an alphabet)

 Step 3.5.1: Read ch to post [j++]

 Step 3.6: End if

Step 4: End loop

Step 5: While (stk [top] !=’\0’)

 Step 5.1: Read stk [top] to post [j++]

 Step 5.2: Decrement top

Step 6: End loop

Step7: Assign post[i] as ‘\0’

Step 8: Print “Post fix expression as post”

Step9: Stop

Eval-Postfix ()

Step 1: Start

Step 2: Find postfix expression for given expression

Step 3: For I from 0 to length of post

 Step 3.1: Set ch as post[i]

 Step 3.2: If ch is an alphabet

 Step 3.2.1: Print “Enter the value for ch”

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 49 C S L 2 0 1 D A T A S T R U C T U R E L A B

 Step 3.2.2: Read the value to c.

 Step 3.3.3: Push C to another stk.

 Step 3.3: Else

 Step 3.3.1: Set o1 as stk [top]

 Step 3.3.2: Decrement top

 Step 3.3.3: Set o2 as stk [top]

 Step 3.3.4: Decrement top

 Step 3.3.5: If(ch== +)

 Step 3.3.5.1: x=o1+o2

 Step 3.3.6: If(ch= -)

 Step 3.3.6.1: x=o1-o2

 Step 3.3.7: If (ch=*)

 Step 3.3.7.1: x=o1*o2

 Step 3.3.8: If (ch=/)

 Step 3.3.8.1: x=o1/o2

 Step 3.3.9: End if

 Step 3.3.10: Push (x)

 Step 3.4: End if

Step 4: End for

Step 5: Print value as stk [top]

Step 6: Stop

PROGRAM

#include <stdio.h>

#include<conio.h>

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 50 C S L 2 0 1 D A T A S T R U C T U R E L A B

#include<string.h>

void push(char);

void push1(int);

int priority(char);

void read();

int top=-1,top1=-1,j=0,i,x,y;

char stk[50],stk1[50],a[50],ch,post[50];

void main()

{

clrscr();

printf("\n\n\tProgram for Infix to Postfix Evaluation");

printf("\n\t--\n");

printf("\n\tEnter the expression: ");

gets(a);

for(i=0;a[i]!='\0';i++)

{

ch=a[i];

switch(ch)

{

case '(':push(ch);

break;

case')':while (stk[top]!='(')

{

post[j++]=stk[top];

top--;

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 51 C S L 2 0 1 D A T A S T R U C T U R E L A B

top--;

break;

case '+':

case '-':

case '^':

case '/':

case '*': if (top== -1||stk[top]=='(')

push(ch);

else

{x=priority(ch);

y=priority(stk[top]);

if(y>=x)

{

post[j++]=stk[top];

top--;

push(ch);}

else

push(ch);

}

break;

default:

if(isalpha(ch))

post[j++]=ch;

break;

}

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 52 C S L 2 0 1 D A T A S T R U C T U R E L A B

while(stk[top]!='\0')

{

post[j++]=stk[top];

top--;

}

post[j]='\0';

printf("\n\tPostfix expression: ");

puts(post);

read();

getch();

}

void push(char ch)

{

top++;

stk[top]=ch;

}

void push1(int ch)

{top1++;

stk1[top1]=ch;

}

int priority(char c)

{

if (c=='t'||c=='-')

return 1;

else if(c=='*'||c=='/')

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 53 C S L 2 0 1 D A T A S T R U C T U R E L A B

return 2;

else if(c=='^')

return 3;

else

return 0;

}

void read()

{

int c,o1,o2;

for(i=0;post[i]!='\0';i++)

{ch=post[i];

if(isalpha(ch))

{printf("\n\tEnter the value for %c: ",ch);

scanf("%d", &c);

push1(c);

}

else {

o1=stk1[top1];

top1--;

o2=stk1[top1];

top1--;

switch(ch)

{

case '+':x=o1+o2;

break;

case'-':x=o1-o2;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 54 C S L 2 0 1 D A T A S T R U C T U R E L A B

break;

case'*':x=o1*o2;

break;

case'/':x=o1/o2;

break;

case'^':x=o1^o2;

break;

default:

break;

}

push1(x);

}

}

printf("\n\tValue of the expression is %d",stk1[top1]);

}

OUTPUT:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 55 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is the time complexity of an infix to postfix conversion algorithm?

2. Is Parentheses are simply ignored in the conversion of infix to postfix expression?

3. What are expressions?

4. What do you mean by prefix and postfix expressions?

5. Which data structure is required to check whether an expression contains balanced

parenthesis is?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 56 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 7

MEMORY ALLOCATION AND GARBAGE COLLECTION USING

DOUBLY LINKED LIST

AIM

Write a program to implement memory allocation and garbage collection using doubly

linked list.

ALGORITHM

Assume that START is the first element in the linked list and TAIL is the last element of

linked list.

i. Insert At Beginning

1. Start

2. Input the DATA to be inserted

3. Create a new node.

4. NewNode → Data = DATA NewNode →Lpoint =NULL

5. IF START IS NULL NewNode→ Rpoint = NULL

6. Else NewNode → Rpoint = START START→Lpoint = NewNode

7. START =NewNode

8. Stop

ii. Insertion at location:

1. Start

2. Input the DATA and POS

3. Initialize TEMP = START; i = 0

4. Repeat the step 4 if (i less than POS) and (TEMP is not equal to NULL)

5. TEMP = TEMP → RPoint; i = i +1

6. If (TEMP not equal to NULL) and (i equal to POS)

(a) Create a New Node

(b) NewNode → DATA = DATA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 57 C S L 2 0 1 D A T A S T R U C T U R E L A B

(c) NewNode → RPoint = TEMP → RPoint

(d) NewNode → LPoint = TEMP

(e) (TEMP → RPoint) → LPoint = NewNode

1. (f) TEMP → RPoint = New Node

2. Else

(a) Display “Position NOT found”

1. Stop

iii. Insert at End

1. Start

2. Input DATA to be inserted

3. Create a NewNode

4. NewNode → DATA = DATA

5. NewNode → RPoint = NULL

6. If (SATRT equal to NULL)

a. START = NewNode

b. NewNode → LPoint=NULL

1. Else

a. TEMP = START

b. While (TEMP → Next not equal to NULL)

i. TEMP = TEMP → Next

c. TEMP → RPoint = NewNode

d. NewNode → LPoint = TEMP

1. Stop

iv. Forward Traversal

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 58 C S L 2 0 1 D A T A S T R U C T U R E L A B

1. Start

2. If (START is equal to NULL)

a) Display “The list is Empty”

b) Stop

1. Initialize TEMP = START

2. Repeat the step 5 and 6 until (TEMP == NULL)

3. Display “TEMP → DATA”

4. TEMP = TEMP → Next

5. Stop

v. Backward Traversal

1. Start

2. If (START is equal to NULL)

3. Display “The list is Empty”

4. Stop

5. Initialize TEMP = TAIL

6. Repeat the step 5 and 6 until (TEMP == NULL)

7. Display “TEMP → DATA”

8. TEMP = TEMP → Prev

9. Stop

PROGRAM

#include <stdio.h>

#include <stdlib.h>

struct node {

 int data;

 struct node *prev;

 struct node *next;

};

struct node *head = NULL;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 59 C S L 2 0 1 D A T A S T R U C T U R E L A B

struct node *last = NULL;

struct node *current = NULL;

//Create Linked List

void insert(int data) {

 // Allocate memory for new node;

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->data = data;

 link->prev = NULL;

 link->next = NULL;

 // If head is empty, create new list

 if(head==NULL) {

 head = link;

 return;

 }

 current = head;

 // move to the end of the list

 while(current->next!=NULL)

 current = current->next;

 // Insert link at the end of the list

 current->next = link;

 last = link;

 link->prev = current;

}

//display the list

void printList() {

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 60 C S L 2 0 1 D A T A S T R U C T U R E L A B

 struct node *ptr = head;

 printf("\n[head] <=>");

 //start from the beginning

 while(ptr->next != NULL) {

 printf(" %d <=>",ptr->data);

 ptr = ptr->next;

 }

 printf(" %d <=>",ptr->data);

 printf(" [head]\n");

}

int main() {

 insert(10);

 insert(20);

 insert(30);

 insert(1);

 insert(40);

 insert(56);

 printList();

 return 0;

}

OUTPUT

$gcc -o main *.c

$main

[head] <=> 10 <=> 20 <=> 30 <=> 1 <=> 40 <=> 56 <=> [head]

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 61 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is a linked list?

2. What is the difference between single linked list and double linked list?

3. What are dynamic memory allocations?

4. What do you mean by garbage collection in c?

5. What are the different types of insertions in doubly linked list?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 62 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 8

POLYNOMIYAL REPRESENTATION USING LINKED LIST

AIM

Write a program to implement polynomial representation using linked list.

ALGORITHM

Step 1. Start.

Step 2. Define a structure with coeft and degree and a link to next location. And name it as

poly.

Step 3. Declare pointers for root and new nodes.

Step 4. Read the highest degree and its coefficients

Step 6. if(coeft!=0)then do

 set new=(poly*)malloc(sizeof(poly))

Step 6.1 if(new= =NULL)

 then print memory allocation error and exit

 else

do the following

new->coeft=coeft;

new->degree=hdegree;

new->link=NULL;

Step 7.if(root= =NULL)

 then set

root=new;

temp=root;

else do

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 63 C S L 2 0 1 D A T A S T R U C T U R E L A B

temp->link=new;

temp=new;

Step 8. hdegree--;

Step 9. Print the polynomial

Step 10. Stop.

PROGRAM

#include<stdio.h>

struct node

{

int coeft;

int degree;

struct node *link;

};

typedef struct node poly;

main()

{

poly *root,*temp,*new;

int hdegree, coeft;

root=NULL;

clrscr();

printf(“Enter the highest degree of polynomial:”)

scanf(“%d”,&hdegree);

while(hdegree>=0)

{

printf(“Enter coefficient of variable with degree %d”,hdegree);

scanf(“%d”,&coeft);

if(coeft!=0)

{

new=(poly*)malloc(sizeof(poly));

if(new= =NULL)

{

printf(“Memory allocation error…”); exit(0);

}

new->coeft=coeft;

new->degree=hdegree;

new->link=NULL;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 64 C S L 2 0 1 D A T A S T R U C T U R E L A B

if(root= =NULL)

{

root=new;

temp=root;

}

else

{

temp->link=new;

temp=new;

}

}

hdegree--;

}

clrscr();

printf(“\n The Polynomial is:\n\n”);

temp=root;

while(temp!=NULL)

{

if(temp->coeft>0)

 printf(“+%dx%d”,temp->coeft,temp->degree);

else

 printf(“%dx%d”,temp->coeft,temp->degree);

temp=temp->link;

}

 getch();

}

OUTPUT

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 65 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is a polynomial?

2. What is linked list?

3. How do you represent polynomial using linked list?

4. What are the different types of linked list?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 66 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 9

LINEAR SEARCH AND BINARY SEARCH

AIM

Write a program to implement linear search and binary search.

ALGORITHM

Step 1: Start

Step 2: Set count as zero, flag as zero and position as zero

Step 3: Read the limit

Step 4: Read the elements

Step 5: Loop (i<n)

 Step 5.1: Read the elements

 Step 5.2: Incriment i

Step 6: End of loop

Step 7: Loop (i<n)

 Step 7.1: Print the elements

Step 8: Loop ends

Step 9: Printf enter the key elements

Step10: Read the element

Step 11: Loop (i<n)

 Step 11.1: If (a[i]+key)

 Step 11.1.1: Set flag =1

 Step 11.1.2: Set position=1+1

 Step 11.1.3: Increment count

 Step 11.1.4: Print the key found at position

 Step 11.2: If ends

Step 12: Loop ends

Step 13: If (flag=1)

 Step 13.1: Print the key found number of times

Step 14: If ends

Step 15: Else

 Step 15.1: Print element not found

Step 16: Else end

Step 17: Stop

PROGRAM

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 67 C S L 2 0 1 D A T A S T R U C T U R E L A B

#include<stdio.h>

#include<conio.h>

void main()

{

 int a[50],i,n,elt,count;

 clrscr();

 printf("\n\tLINEAR SEARCH");

 printf("\n\t________________\n\n");

 printf("\n\tEnter the limit:");

 scanf("%d",&n);

 printf("\n\tEnter the elements:");

 for(i=0;i<n;i++)

{

scanf("%d",&a[i]);

}

printf("\n\tThe elements are:");

for(i=0;i<n;i++)

{

printf("\t%d",a[i]);

}

printf("\n\n\tEnter the element to be searched:");

scanf("%d",&elt);

count=0;

for(i=0;i<n;i++)

{

if(a[i]==elt)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 68 C S L 2 0 1 D A T A S T R U C T U R E L A B

{

count=count+1;

}

}

printf("\n\n\tThe element is present %d times",count);

getch();

}

OUTPUT:

ALGORITHM:

Step 1: Start

Step 2: Read the Array size

Step 3: Read the array elements

Step 4: Loop (i<n)

 Step 4.1: Read the array elements

Step 5: Loop ends

Step 6: Loop (i<n)

 Step 6.1: Loop (j<n-1)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 69 C S L 2 0 1 D A T A S T R U C T U R E L A B

 Step 6.2: If (a[i]>a[j+1])

 Step 6.2.1: Set temp as a[i]

 Step 6.2.2: Set a[i] as a[j+1]

 Step 6.2.3: Set a[j+1] as temp

 Step 6.3: Loop ends

Step 7: Loop ends

Step 8: Loop (i<n)

 Step 8.1: Print Sorted array

Step 9: Loop ends

Step10: Set begin as zero

Step11: Set end as n

Step 12: Print enter the key

Step 13: Read key

Step 14: Loop (begin <end)

 Step 14.1: Set mid as (begin+end)/2

 Step 14.2: If (a[mid]==key)

 Step 14.2.1: Print element key found at position mid

 Step 14.3: If ends

 Step 14.4: If (key>a[mid])

 Step 14.4.1: Set begin as mid +1

 Step 14.5: Endif

 Step 14.6: Else

 Step 14.6.1: Set end as mid -1

 Step 14.7: Else end

 Step 14.8: If (begin++ end)

 Step 14.8.1: Print not found

 Step 14.9: If ends

Step 15: Stop

PROGRAM

#include<stdio.h>

#include<conio.h>

 void main()

{

int a[50],i,j,n,elt,temp,flag=0,low=0,high,mid;

clrscr();

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 70 C S L 2 0 1 D A T A S T R U C T U R E L A B

printf("\n\tBINARY SEARCH");

printf("\n\t_______________\n\n");

printf("\n\tEnter the limit:");

scanf("%d",&n);

printf("\n\tEnter the elements:");

for(i=0;i<n;i++)

{

scanf("%d",&a[i]);

}

printf("\n\n\tThe elements are:");

for(i=0;i<n;i++)

{

printf("\t%d",a[i]);

}

for(i=0;i<n-1;i++)

{

for(j=0;j<n-1-i;j++)

{

if(a[j]>a[j+1])

{

temp=a[j];

a[j]=a[j+1];

a[j+1]=temp;

}

}

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 71 C S L 2 0 1 D A T A S T R U C T U R E L A B

printf("\n\n\tThe sorted array is");

for(i=0;i<n;i++)

{

printf("\t%d",a[i]);

}

printf("\n\n\tEnter the element to be searched:");

scanf("%d",&elt);

high=n-1;

while(low<=high)

{

mid=(low+high)/2;

if(elt<a[mid])

{

high=mid-1;

}

else if(elt>a[mid])

{

low=mid+1;

}

else

{

printf("\n\n\tThe element is present");

flag=1;

break;

}

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 72 C S L 2 0 1 D A T A S T R U C T U R E L A B

if(flag==0)

{

printf("\n\n\tThe element is not present");

}

 getch();

}

OUTPUT:

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is linear search?

2. What is binary search?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 73 C S L 2 0 1 D A T A S T R U C T U R E L A B

3. What are the complexities of linear and binary search?

4. Which search is better and why?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 74 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 10

BINARY TREES

AIM

Write a program to implement binary tree.

ALGORITHM

Step 1: Start

Step 2: Ptr=new node ()

Step 3: Repeat the following steps until info!=0

Step 4: Enter the ptr->data

Step 5: Ptr->left=NULL and ptr->right=NULL

Step 6: If (root=NULL)

 Step 6.1: Root =ptr

 Step 6.2: Start=root

Step 7: Else

 Step 7.1: Root=start

 Step 7.2: While (root!=NULL)

 Step 7.2.1: If (ptr->data<root->data)

 Step 7.2.1.1: If (root->left=NULL)

 Step 7.2.1.1.1: Root->left=ptr

 Step 7.2.1.1.2: Exit while loop

 Step 7.2.2: Root=root->left

 Step 7.2.3: Else

 Step 7.2.3.1: If (root->right==NULL)

 Step 7.2.3.2: Root->right=ptr

 Step 7.2.3.3: Exit while loop

 Step 7.2.3.4: Root=root->right

 Step 7.2.4: End if

 Step 7.3: End While

Step 8: End if

Step 9: Stop

Preorder ()

Step 1: Start

Step 2: If (p=NULL) ie start= NULL

 Step 2.1: Tree traversal not possible

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 75 C S L 2 0 1 D A T A S T R U C T U R E L A B

Step 3: Else

 Step 3.1: Print p->data

 Step 3.2: Preorder (p->left)

 Step 3.3: Preorder (p->right)

Step 4: End if

Step 5: Stop

Inorder ()

Step 1: Start

Step 2: If (p=NULL)

 Step 2.1: Tree traversal not possible

Step 3: Else

 Step 3.1: Inorder (p->left)

 Step 3.2: Print p->data

 Step 3.3: Inorder (p->right)

Step 4: End if

Step 5: Stop

Postorder ()

Step 1: Start

Step 2: If (p==NULL)

 Step 2.1: Tree traversal not possible

Step 3: Else

 Step 3.1: Postorder (p->left)

 Step 3.2: Postorder (p->right)

 Step 3.3: Print p->data

Step 4: End if

Step 5: Stop

PROGRAM

include <stdio.h>

include <conio.h>

include <stdlib.h>

 typedef struct BST {

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 76 C S L 2 0 1 D A T A S T R U C T U R E L A B

int data;

struct BST *lchild, *rchild;

} node;

void insert(node *, node *);

void inorder(node *);

void preorder(node *);

void postorder(node *);

node *search(node *, int, node **);

int f=0;

void main() {

int choice;

char ans = 'N';

int key;

node *new_node, *root, *tmp, *parent;

node *get_node();

root = NULL;

clrscr();

printf("\n\n\tProgram For Binary Search Tree");

printf("\n\n\t------------------------------");

do {

printf("\n");

printf("\n\tMenu");

printf("\n\t----");

printf("\n\t1.Create");

printf("\n\t2.Search");

printf("\n\t3.Traversals");

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 77 C S L 2 0 1 D A T A S T R U C T U R E L A B

printf("\n\t4.Exit");

printf("\n\tEnter your choice: ");

scanf("%d", &choice);

switch (choice) {

case 1:

do {

new_node = get_node();

printf("\tEnter The Element: ");

scanf("%d", &new_node->data);

if (root == NULL) /* Tree is not Created */

root = new_node;

else

insert(root, new_node);

printf("\tWant To enter More Elements?(y/n): ");

scanf(" %c",ans);

ans = getch();

} while (ans == 'y');

break;

case 2:

printf("\tEnter Element to be searched: ");

scanf("%d", &key);

tmp = search(root, key, &parent);

if(tmp!=NULL)

{

printf("\n\tParent of node %d is %d\n", tmp->data, parent->data);

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 78 C S L 2 0 1 D A T A S T R U C T U R E L A B

break;

case 3:

 if (root == NULL)

printf("Tree Is Not Created");

else {

printf("\n\tThe Inorder display : ");

inorder(root);

printf("\n\tThe Preorder display : ");

preorder(root);

printf("\n\tThe Postorder display : ");

postorder(root);

}

printf("\n");

break;

}

} while (choice != 4);

/*

 Get new Node

 */

node *get_node() {

node *temp;

temp = (node *) malloc(sizeof(node));

temp->lchild = NULL;

temp->rchild = NULL;

return temp;

/*

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 79 C S L 2 0 1 D A T A S T R U C T U R E L A B

 This function is for creating a binary search tree

 */

void insert(node *root, node *new_node) {

if (new_node->data < root->data) {

if (root->lchild == NULL)

root->lchild = new_node;

else

insert(root->lchild, new_node);

}

if (new_node->data > root->data) {

if (root->rchild == NULL)

root->rchild = new_node;

else

insert(root->rchild, new_node);

}

}

/*

 This function is for searching the node from

 binary Search Tree

 */

node *search(node *root, int key, node **parent) {

node *temp;

temp = root;

while (temp != NULL) {

if (temp->data == key) {

f=1;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 80 C S L 2 0 1 D A T A S T R U C T U R E L A B

printf("\tElement %d is Present", temp->data);

return temp;

}

*parent = temp;

if (temp->data > key)

temp = temp->lchild;

else

temp = temp->rchild;

}

if(f==0)

{

printf("\nElement not [present");

return NULL;

}

}

/*

 This function displays the tree in inorder fashion

 */

void inorder(node *temp) {

if (temp != NULL) {

inorder(temp->lchild);

printf("%d", temp->data);

inorder(temp->rchild);

}

}

/*

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 81 C S L 2 0 1 D A T A S T R U C T U R E L A B

 This function displays the tree in preorder fashion

 */

void preorder(node *temp) {

if (temp != NULL) {

printf("%d", temp->data);

preorder(temp->lchild);

preorder(temp->rchild);

}

}

/*

 This function displays the tree in postorder fashion

 */

void postorder(node *temp) {

if (temp != NULL) {

postorder(temp->lchild);

postorder(temp->rchild);

printf("%d", temp->data);

 }

}

OUTPUT:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 82 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 83 C S L 2 0 1 D A T A S T R U C T U R E L A B

1. What are non linear data structures?

2. What are the examples of non linear data structures?

3. What are the traversals of trees?

4. What are the different types of trees?

5. What is the difference between tree and a graph?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 84 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 11

DFS and BFS

AIM

Write a program to implement DFS and BFS.

ALGORITHM

Step 1: Start

Step 2: Enter the data

Step 3: Store the data in an array

Step 4: To find BFS goto step 5

Step 5: Set i=0,j=0

Step 6: Repeat the steps 6 to 6.3 till i<n

 Step 6.1: If vis[i]=0 then vis[i]=I and print data[i]

 Step 6.2: Repeat the steps 6.2 to 6.3 till j<n

 Step 6.3:I f adj[i][j]=1&vis[j]=0,then set vis[j]=1& print data[j]

Step 7: To find DFS goto Step 8

Step 8: Vist[x] = 1

 Step 8.1: Print data[x]

Step 9: Repeat the following steps till j<=n

 Step 9.1: If adj[x][j]=1 and vis[j]=0

 Step 9.2: Dfs (j)

Step 10: Stop

 PROGRAM

#include<stdio.h>

int q[20],top=-1,front=-1,rear=-1,a[20][20],vis[20],stack[20];

int delete();

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 85 C S L 2 0 1 D A T A S T R U C T U R E L A B

void add(int item);

void bfs(int s,int n);

void dfs(int s,int n);

void push(int item);

int pop();

void main()

{

int n,i,s,ch,j;

char c,dummy;

printf("ENTER THE NUMBER VERTICES ");

scanf("%d",&n);

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

printf("ENTER 1 IF %d HAS A NODE WITH %d ELSE 0 ",i,j);

scanf("%d",&a[i][j]);

}

}

printf("THE ADJACENCY MATRIX IS\n");

for(i=1;i<=n;i++)

{

for(j=1;j<=n;j++)

{

printf(" %d",a[i][j]);

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 86 C S L 2 0 1 D A T A S T R U C T U R E L A B

}

printf("\n");

}

do

{

for(i=1;i<=n;i++)

vis[i]=0;

printf("\nMENU");

printf("\n1.B.F.S");

printf("\n2.D.F.S");

printf("\nENTER YOUR CHOICE");

scanf("%d",&ch);

printf("ENTER THE SOURCE VERTEX :");

scanf("%d",&s);

switch(ch)

{

case 1:bfs(s,n);

break;

case 2:

dfs(s,n);

break;

}

printf("DO U WANT TO CONTINUE(Y/N) ? ");

scanf("%c",&dummy);

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 87 C S L 2 0 1 D A T A S T R U C T U R E L A B

scanf("%c",&c);

}while((c=='y')||(c=='Y'));

}

//**************BFS(breadth-first search) code**************//

void bfs(int s,int n)

{

int p,i;

add(s);

vis[s]=1;

p=delete();

if(p!=0)

printf(" %d",p);

while(p!=0)

{

for(i=1;i<=n;i++)

if((a[p][i]!=0)&&(vis[i]==0))

{

add(i);

vis[i]=1;

}

p=delete();

if(p!=0)

printf(" %d ",p);

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 88 C S L 2 0 1 D A T A S T R U C T U R E L A B

for(i=1;i<=n;i++)

if(vis[i]==0)

bfs(i,n);

}

void add(int item)

{

if(rear==19)

printf("QUEUE FULL");

else

{

if(rear==-1)

{

q[++rear]=item;

front++;

}

else

q[++rear]=item;

}

}

int delete()

{

int k;

if((front>rear)||(front==-1))

return(0);

else

{

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 89 C S L 2 0 1 D A T A S T R U C T U R E L A B

k=q[front++];

return(k);

}

}

//***************DFS(depth-first search) code******************//

void dfs(int s,int n)

{

int i,k;

push(s);

vis[s]=1;

k=pop();

if(k!=0)

printf(" %d ",k);

while(k!=0)

{

for(i=1;i<=n;i++)

if((a[k][i]!=0)&&(vis[i]==0))

{

push(i);

vis[i]=1;

}

k=pop();

if(k!=0)

printf(" %d ",k);

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 90 C S L 2 0 1 D A T A S T R U C T U R E L A B

for(i=1;i<=n;i++)

if(vis[i]==0)

dfs(i,n);

}

void push(int item)

{

if(top==19)

printf("Stack overflow ");

else

stack[++top]=item;

}

int pop()

{

int k;

if(top==-1)

return(0);

else

{

k=stack[top--];

return(k); } }

OUTPUT:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 91 C S L 2 0 1 D A T A S T R U C T U R E L A B

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What are non linear data structures?

2. What are the examples of non linear data structures?

3. What are the traversals of graphs?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 92 C S L 2 0 1 D A T A S T R U C T U R E L A B

4. What are the differences between DFS and BFS?

5. What is the difference between tree and a graph?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 93 C S L 2 0 1 D A T A S T R U C T U R E L A B

EXPERIMENT – 12

INSERTION SORT

AIM

Write a program to implement insertion sort.

ALGORITHM

Step 1: Start

Step 2: Read the array size

Step 3: Read the elements

Step 4: Loop (i<n)

 Step 4.1: Read array elements

Step 5: Loop ends

Step 6: Set I to 1

Step 7: Loop (i<n)

 Step 7.1: Set temp as a[i]

 Step 7.2: Set j as i-1

 Step 7.3: Loop (a[i]>temp & j>=0)

 Step 7.3.1: Set a[j+1]=a[j]

 Step 7.3.2: Decrement j

 Step 7.4: End loop

 Step 7.5: Set a[j+1] as temp

Step 8: End loop

Step 9: Loop (i<n)

 Step 9.1: Print the sorted array

Step10: Loop ends

Step 11: Stop

PROGRAM

#include<stdio.h>

#include<conio.h>

void main()

{

int a[50],i,n,j,temp;

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 94 C S L 2 0 1 D A T A S T R U C T U R E L A B

clrscr();

printf("\n\t\tINSERTION SORT\n");

printf("\t\t_____________\n");

printf("\n\n\tEnter the limit:");

scanf("%d",&n);

printf("\n\n\tEnter the elements:");

for(i=0;i<n;i++)

{

scanf("%d",&a[i]);

}

for(i=1;i<n;i++)

{

temp=a[i];

j=i-1;

while(temp<a[j]&&j>=0)

{

a[j+1]=a[j];

 j--;

 }

a[j+1]=temp;

}

printf("\n\n\tThe sorted array is:");

for(i=0;i<n;i++)

{

printf("\t%d",a[i]);

}

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 95 C S L 2 0 1 D A T A S T R U C T U R E L A B

getch();

}

OUTPUT:

RESULT AND DISCUSSION

The algorithm was developed and the program was coded. The program was tested successfully.

VIVA QUESTIONS

1. What is searching?

2. What is the difference between searching and sorting?

3. What are the different types of sorting?

4. Which sorting is considered as better?

5. What is complexity of insertion sort?

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING, NCERC PAMPADY.

 96 C S L 2 0 1 D A T A S T R U C T U R E L A B

